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A new method is introduced for calculating time-dependent, non-Newtonian flows of
fluids described by integral constitutive equations. The starting point for the method
is the integral form of the solution to the equations of motion, valid in the limit of low
Reynolds number. Because of the non-Newtonian nature of the fluid, this solution
includes an integral over the domain of the flow, which is not present in boundary
integral methods. This integral over the fluid volume (in three dimensions) or area
(in two dimensions) is converted to a Lagrangian reference frame, and discretized for
numerical evaluation. Because points in the integrand move with the fluid velocity,
values of the non-Newtonian portion of the stress can be found by integrating
the deformation at those points in conjunction with a suitable integral constitutive
equation. The contribution to the total velocity field of the non-Newtonian stress at
each fluid element is that of a point dipole, and the method bears many similarities to
the point-vortex method for calculating inviscid flows. Like the point-vortex method,
it is necessary to introduce cutoff functions that remove the singular nature of
the dipole–dipole interactions. In addition, to render the method computationally
feasible, the interactions between the dipoles must be calculated by the fast-multipole
method or some comparable approach. Methods for calculating cutoff functions and
implementing the fast multipole method are discussed, and simulation results are
presented for one- and two-phase time-dependent flows of viscoelastic fluids between
eccentric and concentric rotating cylinders.

1. Introduction
In the context of low Reynolds number flow, a ‘singularity method’ is a method of

obtaining solutions to problems in terms of a sum of contributions from point forces,
point dipoles and higher-order multipoles. In Newtonian fluids, singularity methods,
which are closely related to boundary-integral methods, involve placing a collection or
distribution of these so-called image singularities in a region exterior to the flow, and
assigning their strengths and positions such that they yield the appropriate boundary
conditions (Pozrikidis 1992). This approach has been used, for example, to calculate
flow around axisymmetric bodies, and hydrodynamic interactions between suspended
ellipsoidal particles (Chwang & Wu 1975; Kim 1986), and is also an important
component of slender-body theory (Batchelor 1970; Cox 1970). It bears an obvious
similarity to the method of images used in electrostatics (Jackson 1975; Phillips
1995), and provides elegant and simple solutions to some problems, particularly those
involving the motion and interactions of suspended particles. In this paper, we show
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how such a method can be used to calculate time-dependent viscoelastic flows of
fluids described by integral constitutive equations.

As noted by Rajagopalan, Armstrong & Brown (1993), an important advantage
of integral models is the relative ease and efficiency with which they can model
distributions of relaxation times. It is also noteworthy that some of the best models
for capturing the rheological behaviour of polymeric liquids over a range of steady and
time-dependent conditions are of the integral type. For example, the Kaye–Bernstein–
Kearsley–Zapas or KBKZ model remains one of the best in providing quantitative
agreement with rheological data (Tanner 1992). However, identifying accurate and
efficient numerical methods to use with such integral models has been problematic.
To date, two methods have been introduced for calculating time-dependent flows with
integral constitutive equations (Rasmussen 1999; Peters, Hulsten & van den Brule
2000). The current method differs from both of those significantly, particularly in the
absence of either a fixed or Lagrangian mesh. It is therefore plausible that singularity
or integral methods such as this one will provide a convenient alternative technique
for some problems, particularly those with complicated time-dependent geometries.

A numerical form of a singularity method was proposed by Dabros (1985), who
suggested that the singularities be located in some regular configuration, and that
their strengths be calculated by minimizing the deviation from conditions specified
at the boundaries. This idea has since been used by others to examine the behaviour
of particles in wavy-walled tubes (Nitsche & Brenner 1990), fibrous matrices (Clague
& Phillips 1996; 1997) and Brinkman media (Buck, Dungan & Phillips 1999). A
significant extension of the approach, to model non-neutrally buoyant Newtonian
drops with surface tension, was recently reported by Nitsche & Schaflinger (2001).
Here a singularity method is developed for calculating viscoelastic flows by using,
in addition to singularities external to the flow, point dipoles that are distributed
throughout the fluid itself.

This approach can be motivated physically by consideration of the bead-and-spring
dumbbells commonly used in kinetic-theory models of polymer solutions. The velocity
disturbance v′ of a bead-and-spring dumbbell with beads at positions x1 and x2 is
given by

v′(x) =
1

4πµ
[J(x − x1) · F − J(x − x2) · F], (1)

where F is the force exerted on the beads by the spring, µ is the viscosity of the
suspending fluid, and J is the point-force propagator, or singular solution to Stokes
equations. In the continuum limit, where x1 − x2 → 0, a Taylor expansion shows that

v′(x) =
1

4πµ
�x · ∇ J(x − x ′) · F =

1

4πµ
D : ∇ J, (2)

where the dipole D is defined by D = �x F and x ′ is its location. The fact that the
dipole strength per unit volume of fluid is the same as Kramer’s expression for the
dumbbell contribution to the stress (Bird et al. 1987b) indicates that, in the continuum
limit, non-Newtonian stresses may be represented as a distribution of point dipoles,
which contribute a velocity disturbance given by (2). A mathematical derivation of
this result, which is based on the integral form of the solution for the flow and is
valid for any constitutive equation, is provided in § 2. Note that �x and F are both
oriented along the bead-to-bead axis, guaranteeing that the dipole D is symmetric.

Direct simulations of the flow of suspensions of bead-and-spring dumbbells were
performed by Binous & Phillips (1999a, b). In such simulations, the strength of
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the velocity disturbance contributed by a dumbbell is determined by the force the
springs exert on the beads, which are pushed apart by spatial variations in the
velocity field, as well as by Brownian motion. Because a dipole is located at a
single point, in a simulation involving these point singularities, their strengths do
not evolve as a necessary component of the simulation, but must be evaluated by
making use of constitutive equations. Here we make use of integral constitutive
equations, which describe the stress in a fluid element in terms of the deformation
it has experienced during a history spanning many relaxation times. Because such
equations are written in a Lagrangian reference frame, they coordinate naturally with
an integral representation of the solution in which integrals over the flow domain
are written in a Lagrangian frame of reference. The dipole positions are advanced in
time according to the fluid velocity, with each dipole contributing the non-Newtonian
portion of the stress in its own fluid element.

One difficulty with the point-dipole method (PDM) used here lies in the fact
that the dipoles, which are constantly in motion and interact with each other, are
singular. Without a suitable method for smoothing the dipole–dipole interactions,
the time evolution of a flow containing such singular entities can become unstable.
A very similar challenge is present with the point-vortex method for calculating
inertia-dominated flows (Puckett 1993). In that approach, the equations of motion are
expressed in terms of the vorticity, and the solution involves summing contributions
of singular point vortices that move with the fluid velocity, just as the dipoles do
in the point-dipole method. The point vortices and point dipoles are mathematically
very similar, and for both methods so-called ’cutoff’ functions can be derived that
remove the singular interaction at small separations, stabilizing the system. Error
estimates for this smoothing process can also be derived, and are discussed below.

In order to make the point–dipole method computationally efficient, it is also
necessary to sum the dipole–dipole interactions rapidly and accurately. If performed
in the most straightforward way, the computation time for such a sum is O(N2), where
N is the number of dipoles. However, the fast multipole method (FMM) of Greengard
(1988) and Greengard & Rokhlin (1997) provides an algorithm for reducing the rate
of growth in computation time to O(N ), providing an enormous saving in calculations
which can involve 105 dipoles. The FMM has been used most widely to calculate
electrostatic interactions. However, it has also been used by Sangani & Mo (1996) to
calculate low-Reynolds-number hydrodynamic interactions in Newtonian flows. An
approach modified to suit the PDM is used here. A growing literature attests to the
efficacy of parallel versions of the FMM (Greengard & Gropp 1990; Board et al.
1992; Lee & Jeong 1998; Choi, Ruedenberg & Gordon 2001), a fact which will make
large-scale multipole-based simulations feasible on parallel computers or computer
clusters.

We have chosen the flow between eccentric rotating cylinders, or the journal-bearing
problem, as a convenient geometry for a preliminary evaluation of the point-dipole
method. As shown in figure 1, the radii of the inner and outer cylinders are Ri and R0,
respectively, and the inner cylinder rotates with angular velocity Ω in the z-direction.
In the limit where the gap between the two cylinder surfaces is small relative to
the radius, asymptotic results are available for quantitative comparison with the
numerical results obtained here (Ballal & Rivlin 1976; Phan-Thien & Tanner 1981;
Beris, Armstrong & Brown 1983). These results pertain to low Deborah numbers, or
De � 1, where De is given by

De = Ωλ, (3)
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Figure 1. Schematic diagram of eccentric cylinders with centres separated by a distance e in
the x-direction. The inner cylinder rotates with rotational velocity Ω in the z-direction, and
the flow is in the annulus between the cylinders. Solid circles outside the flow domain are
image singularities (point forces and dipoles).

and is the ratio of the fluid relaxation time λ to the time for a fluid element to
circulate around the gap in the θ-direction. However, in some cases the Weissenberg
number Wi, defined by

Wi =
ΩλRi

R0 − Ri

, (4)

can be of order unity. As the product of λ and a characteristic shear rate, it is Wi that
determines the strength of the normal stresses in the flow. Hence, this test problem
can be used to evaluate the efficacy of the PDM in calculating normal stresses, in
addition to shear-thinning and transient behaviour in viscoelastic flows.

2. Description of the problem
As shown in figure 1, we consider a system of eccentric cylinders, with the inner

cylinder rotating and the outer one stationary. The origin is placed at the centre of
the inner cylinder, and is displaced by a distance −e in the x-direction from the centre
of the outer cylinder. We define a dimensionless gap distance δ as

δ =
R0 − Ri

Ri

(5)

and a dimensionless eccentricity ε by

ε =
e

R0 − Ri

. (6)

Also shown schematically in figure 1 are singularities external to the flow and point
dipoles in the fluid. The latter create velocity disturbances as given by (2) with

J(x) = −I ln(r) +
xx
r2

, (7)

where r = |x|.
Under conditions where inertial effects are negligible, the equations governing

conservation of mass and momentum in the incompressible fluid are
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∇ · v = 0 (8)

and

∇ · τ − ∇p = −∇ · τp, (9)

where v and p are the fluid velocity and pressure, respectively, and no-slip conditions
are imposed on v on both cylinder surfaces. The stress tensor σ is given by σ =
−pI + τ + τp , where the Newtonian stress τ is related to the rate of strain tensor γ̇

and the velocity v by

τ = µγ̇ = µ(∇v + ∇vt ). (10)

Here µ is a constant Newtonian viscosity, and all non-Newtonian stresses are
represented by the stress tensor τp .

We represent the viscoelastic portion of the stress by either of two well-known
integral constitutive equations. The first,

τp = (Sη0 − µ)γ̇ + (1 − S)

∫ t

−∞

N∑
i=1

Mi(t − t ′)γ [0](x, t, t ′) dt ′, (11)

reduces to the convected Maxwell model when the solvent fraction S is zero, S = 0,
and the memory function Mi(t − t ′) is given by

Mi(t − t ′) =
ηi

λ2
i

exp(−(t − t ′)/λi). (12)

Equation (11) gives the non-Newtonian stress of the fluid particle at position x at
time t in terms of an integral over the deformation of that same particle at previous
times t ′. The tensor γ [0] is the finite relative strain, related to the Finger strain tensor
B by (Bird, Armstrong & Hassager 1987a)

γ[0] = I − B. (13)

When the parameter S, which is sometimes written as the ratio of a retardation
time and a relaxation time, is non-zero, (11) is an integral form of the Oldroyd-B
or convected Jeffreys constitutive model. These models describe a fluid with constant
viscosity and constant normal stress coefficients in steady shear flow, characteristics
of the class of polymer solutions known as Boger fluids.

The second integral model of interest here is given by

τp = −µγ̇ +

∫ t

−∞

N∑
i=1

Mi(t − t ′)
1

1 − (1/α) tr
(
γ [0]

)γ [0](x, t, t ′) dt ′. (14)

Equation (14) is a simplified version of the model of Papanastasiou, Scriven &
Macosko (1983), referred to hereafter as the PSM model. In the limit α → ∞, it has
the same form as the convected Maxwell model. However, for finite α, it exhibits shear
thinning both in the viscous and normal stress coefficients, and it therefore captures
qualitative features that are exhibited by most polymeric liquids, but which are missing
in (11). For a quantitative description of most viscoelastic fluids, one would require
values of N equal to at least 3 or 4 (see, e.g., Barakos & Mitsoulis 1995). However,
for purposes of comparison with other numerical results, it is convenient to choose
N = 1. With this choice, the coefficient η1 is the zero-shear viscosity η0, η1 = η0, and
λ1 is the single relaxation time λ, λ1 = λ. This simplification is made in all of the
calculations described below.
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3. Method of solution
As has been shown by others (Zheng et al. 1990; Pozrikidis 1992; Ladyzhenskaya

1969), the solution to (8) and (9) at a point x in the fluid can be expressed in integral
form:

v(x, t) = v∞(x, t)− 1

4πµ

∫
S

J(x, x ′) ·[σ (x ′, t) ·n(x ′)] dx ′+
1

4πµ

∫
A

τp(x ′, t) :∇ J(x, x ′) dA.

(15)

Here positions within the flow are denoted by x, and the first integral on the right-hand
side of (15) is over the surface S bounding the flow. Like the imposed Newtonian
velocity v∞, the first integral contributes a Newtonian velocity field which, when
combined with the non-Newtonian contribution from the integral of τp over the flow
domain A, satisfies the governing equations and no-slip boundary conditions. Note
that the non-Newtonian stress τp propagates a velocity disturbance as determined by
the dipole propagator ∇ J , as discussed above.

In a singularity method, the first two Newtonian terms on the right-hand side of
(15) are replaced by a velocity field that is generated by summing contributions from
singularities outside of the domain A. Here we use as these ‘image singularities’ Nim

point forces with strength Fim and an equal number of point dipoles with strength
D im, yielding

v(x, t) =
1

4πµ

Nim∑
i=1

[
J(x, x′) · Fim

i + D im
i : ∇ J(x, x′)

]
+

1

4πµ

∫
A

τp(x ′, t) : ∇ J(x, x′) dA.

(16)

In two dimensions, and for symmetric and traceless dipoles, Fim and D im represent
two unknowns each, which are chosen to impose the correct boundary conditions.
In previous applications of this approach (Dabros 1985; Nitsche & Brenner 1990;
Clague & Phillips 1996, 1997), a number of surface points Ns was chosen such that
Ns > 2Nim, and the 2Nim unknowns were found by minimizing the deviation from
no-slip conditions on S. Here we use a similar approach, but set Ns = 2Nim, so that
the unknowns Fim and D im are found by solving a linear system of equations, rather
than by minimizing an error.

Since τp is given by an integral equation that must be applied in a Lagrangian
reference frame, it is convenient to rewrite (16) in such a frame. Let x(α, t) be the
trajectory of a fluid particle initially at position α. Then we have

dx
dt

(α, t) = v(x(α, t), t) (17)

and

x(α, 0) = α, (18)

with v given by (16). To transform the area integral in (16), we change variables of
integration to Lagrangian coordinates (Anderson & Greengard 1985):∫

A

τp(x ′, t) : ∇ J(x, x′) dA =

∫
Aα

τp(x(α′, t), t) : ∇ J(x(α, t), x(α′, t)) d2α′. (19)

Here it has been used that, for an incompressible flow, the Jacobian of this
transformation is unity (Chorin & Marsden 1993). The term d2α′ in (19) indicates an
integral over all the fluid particles in this two-dimensional problem.
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The integration on the right-hand side of (19) is over the Lagrangian coordinate α,
which for any fluid element is given by its position at time t = 0, as stated in (18).
In other words, the integral is over the fluid particles, rather than over positions in
space. To evaluate the integral numerically, we identify Nd dipole positions initially,
where these positions are chosen in accordance with a quadrature scheme, such as
a two-dimensional application of Simpson’s rule, or a Gaussian quadrature. The
weighting factors associated with the ith position αi never change in a simulation,
because they are determined by the Lagrangian coordinate α. Physically this result is
simply a manifestation of the fact that, in an incompressible flow, the area (or volume
in three dimensions) of a fluid element does not change in time. When evaluated
numerically, the discretized integral on the right-hand side of (19) takes the form of
a sum, and (16) becomes

v(x, t) =

Nim∑
i=1

[
J(x, xi) · Fim

i + D im
i : ∇ J(x, xi)

]
+

Nd∑
j=1

Dj : ∇ J(x, xj ), (20)

where the discretization entails letting

τ
p
j (xj , t) d2α′ → Dj , (21)

and τp is the non-Newtonian stress located at the position xj = x(αj , t). Note that
the dipoles Dj in the fluid are distinguished from the image dipoles located outside
the flow by the lack of the superscript im.

Because the position xj moves with the fluid velocity, one can apply directly
constitutive equations that are written in Lagrangian coordinates, such as (11) and
(14). To evaluate the integrals in those equations, one must calculate and store the
Finger strain B(xj , t

′) at each position xj , relative to a series of reference times t ′. To
do this calculation, we use the fact that B can be related to a displacement gradient
tensor E by

B = E · E t , (22)

and in a Lagrangian reference frame the tensor E for a given fluid element changes
in time according to (Bird et al. 1987a)

dE
dt ′ = −E · ∇ vt (23)

with

E = I at t ′ = t. (24)

Integration of (23) for the Nd fluid elements to find E(xj , t
′) for a series of times t ′,

for each fluid particle, yields the required information.
A time step in a simulation is achieved as follows. By using (23), the displacement

gradient tensor E, and hence B and γ [0] via (22) and (13), is incremented in time.
Here these increments are chosen according to a fourth-order Runge–Kutta method.
The new value of γ [0] is used in (11) or (14) to update τp , leading to new values of
the dipole strengths D through (21). With the new dipole strengths, (20) is written
at 2Nim surface points, and no-slip conditions are imposed, yielding a linear set of
equations for the unknown image singularities Fim and D im. Once these are known, the
entire right-hand side of (20) can be evaluated, and the next step in the Runge–Kutta
integration can begin.

Note that the matrix formed from the equations governing Fim and D im depends
only on the positions of the Nim singularities and 2Nim surface points, which do not
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evolve in time. Hence, the LU decomposition of the matrix can be stored, and the
solution of the linear equations requires computation time that scales as N2

im. Since
there are many more dipoles in the fluid than image singularities, Nd � Nim, the
time requirement for each step is dominated by the need to update B at the Nd

dipole positions. In the next subsection, we discuss a method for calculating these
dipole–dipole interactions that avoids numerical instabilities that can arise due to the
singular nature of the dipole propagator ∇ J . Then, in § 3.2, a method for rapidly
summing the dipole–dipole interactions is explained.

3.1. Cutoff functions

Because the dipole propagator ∇ J(x) is singular as r → 0, it is evident that whenever
two dipoles approach one another, the velocity disturbance from the resulting
interaction becomes singular also. This same problem is present in the point vortex
method for calculating inviscid flows, mentioned in the Introduction (Puckett 1993).
Interestingly, in the point-vortex literature it has been shown that, for a smooth
flow, an even distribution of points moving with a fluid remains evenly distributed
(Goodman, Hu & Lowengrub 1990), so that the dipoles should remain well-separated
if they are so initially. Nonetheless, in practice it is found that it is necessary to
remove the singular nature of the interactions for the point-vortex method to yield
good results, and we have found the same to be true for the point-dipole method.
This ’desingularization’ is achieved by using what are termed ‘cutoff functions’, which
effectively distribute a singularity over a small region around its centre, changing a
point vortex into a particle vortex or ‘vortex blob’. We now derive cutoff functions
for the point-dipole method by using an approach that is conceptually similar to that
been used for the particle-vortex method.

The propagator ∇ J , where J is as given in (7), may be written in the form
(Pozrikidis 1992)

∇ J(x) =
1

µ
∇(∇∇ − I ∇2)H (r), (25)

where r = (x · x)1/2 and the function H (r) is the solution to

∇2∇2H = δs(x). (26)

One method of smoothing the dipole propagator ∇ J is to replace the Dirac delta
δs(x) in (26) with a non-singular, numerical approximation to it, fδ(x), which becomes
identical to the Dirac delta in the limit where the cutoff parameter δc approaches
zero, and which yields a value of unity when integrated over position x.

We therefore define a function Hδ(r) as the solution to

∇2∇2Hδ = fδ(x), (27)

and a desingularized propagator ∇ J δ by

∇ J δ(x) =
1

µ
∇(∇∇ − I ∇2)Hδ(r). (28)

For radially symmetric choices of fδ(r), it can be shown that ∇ J δ is related to ∇ J by
a function F (r) according to

∇ J δ = ∇ JF (r), (29)

where the function F (r) satisfies

dF

dr
= fδ(r)2πr (30)
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or

F (r) =

∫ r

0

fδ(s)2πs ds. (31)

Interestingly, the results (29)–(31) are completely analogous to what is found for
the particle-vortex method (Puckett 1993), even though the propagators (or kernels)
are different. An example of deriving a cutoff function F (r) by using a Gaussian
approximation to the Dirac delta function is given below.

Physically, replacing the Dirac delta δs(x) in (26) with the approximate function
fδ(x) in (27) amounts to delocalizing, or spreading, the location of the singular
dipole over a radially symmetric region with an area that is O(δ2

c ). This process
is a recognition of the fact that the dipolar character of a fluid element is spread
throughout the element, and its concentration to a point is only done for purposes of
numerically evalutating the area integral in (16). Thus, in a sense the desingularization
undoes the concentration of dipole strength at a point in space that is needed to
proceed from (19) to (20). In the particle-vortex literature, the resulting entity is
sometimes referred to as a vortex blob, and in the current context one could similarly
speak of a dipolar or elastic blob.

The spreading out of the dipole strength inherent in using ∇ J δ in place of ∇ J
in no way takes account of the presence of the boundaries. Boundaries could be
taken into account if a function fδ(x) were used that is not radially symmetric, but
that complication is not explored here, nor does it appear to be necessary although
it could reduce numerical error. Instead, to avoid the aphysical act of spreading a
dipole through the surface S, the original propagator ∇ J is used to calculate dipole
contributions to the velocity on S. In addition, since the image singularities are not in
the fluid, and their positions are fixed, their velocity disturbances are also calculated
with the original propagators, which are J and ∇ J for Fim and D im, respectively.

To derive the cutoff function used in our calculations, a Gaussian form for the
function fδ(x) is used,

fδ(x) =
1

πδ2
c

exp
(
−r2

/
δ2
c

)
, (32)

which clearly yields unity upon integration,
∫

fδ2πr dr = 1. Substituting into (31)
yields

F2(r) = 1 − exp
(
−r2/δ2

c

)
, (33)

and ∇ J δ follows trivially from (29). As r → 0, the smoothed propagator ∇ J δ → 0,
but for r � δc it is evident that ∇ J δ = ∇ J . The cutoff function F2(r) is used to
calculate all of the results presented in the next section.

To evaluate the usefulness of other possible cutoff functions, and to identify
plausible choices for the cutoff parameter δc, it is helpful to consider the error incurred
by substituting ∇ J δ for ∇ J in (19). To this end, we define a function g(x, t) − gδ(x, t)
as

g(x, t) − gδ(x, t) =

∫
A

τp(x(α′, t), t) : ∇ J(x(α, t), x(α′, t)) dα −
Nd∑
j=1

hjDj : ∇ J δ(x, xj )

(34)

and seek the magnitude of the difference, |g(x, t) − gδ(x, t)|. Following Anderson &
Greengard (1985), we separate the desired quantity into two error terms, em and ed ,
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where

em =

∫
A

τp(x(α′, t), t) : ∇ J(x(α, t), x(α′, t)) dα

−
∫

A

τp(x(α′, t), t) : ∇ J δ(x(α, t), x(α′, t)) dα, (35)

and

ed =

∫
A

τp(x(α′, t), t) : ∇ J δ(x(α, t), x(α′, t)) dα −
Nd∑
j=1

hjDj : ∇ J(x, xj ). (36)

Clearly |g(x, t) − gδ(x, t)| = em + ed , where em accounts for errors from replacing ∇ J
with ∇ J δ , and ed for errors from evaluating the integral over ∇ J δ numerically.

Although the kernel ∇ J is more complicated than that used for the point-vortex
method, it is mathematically similar to it in that it is odd with respect to position x,
and decays as 1/r , i.e.

∂Jij

∂xk

=
1

4πµr2

(
−δijxk + δikxj + δjkxi − 2xixjxk

r2

)
. (37)

Indeed, the developments used by Anderson & Greengard (1985) for the point-vortex
method apply to the current problem with little modification. We restrict the analysis
to functions fδ(x) that are L times continuously differentiable, where x is position in
two dimensions, and which satisfy ∫

fδ(x) dx = 1 (38)

and ∫
xβfδ(x) dx = 0 for all 1 � |β| � m − 1. (39)

(For further conditions on the boundedness and differentiability of fδ , see Anderson
& Greengard 1985 or Puckett 1993.) Then the errors em and ed satisfy

em � Cmδm
c and ed � Cd(∆/δc)

Lδc, (40)

where m is identified through (39), and is referred to as the order of the cutoff
function. The function fδ(x) in (32), like any radially symmetric function satisfying
(38), is a second-order cutoff function (i.e. m = 2), and hence the subscript 2 on F2(r)
in (33).

The result for em in (40) quantifies the otherwise expected result that using the
approximate kernel ∇ J δ is more accurate for smaller values of δc, with an error of
O(δ2

c ) for the cutoff function given in (33). The result for ed in (40) was obtained by
assuming the discretization of the area integral to be consistent with the trapezoid
rule, with points separated by a distance ∆ on a rectangular grid. For the Gaussian
function in (32), the differentiability L can be considered arbitrarily high. It is therefore
apparent that the cutoff parameter δc must be larger than the point-to-point spacing
∆, δc > ∆, which implies that the cores of the dipolar blobs must overlap. In practice,
in particle-vortex calculations researchers have often let δc = hp , with the parameter
p in the range 1/2 < p < 1. The results for the point-dipole method are similar, in
that a value of p of approximately 0.75 seems to yield good results. In addition, it
is necessary to have δc larger than the average dipole–dipole spacing to be able to
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achieve a steady state in the journal-bearing flows examined here, even at very low
Weissenberg numbers.

It is of interest to compare these errors with estimates for more conventional
approaches, such as the Galerkin finite element method. For a triangular mesh with
three nodes per element (i.e. linear triangular elements), the error is O(h), where h

is the length of a side of an element. If quadratic triangular elements are used, with
six nodes per element, then the error is O(h2) (Chung 1978). These errors and the
estimates in (40) therefore scale comparably with the number of unknowns. However,
we note that the estimates for ed and em in (40) do not take account of errors
associated with imposing the no slip boundary conditions. As discussed in § 4 below,
using isotropic cutoff functions near boundaries can introduce errors of O(δc) into the
point-dipole method. Hence the estimates in (40) provide a useful guide for choosing
cutoff functions and related parameters such as δc, but further work is needed on
methods for smoothing dipole–dipole interactions near boundaries.

In addition to the Gaussian function given in (32), we also performed some trial
calculations with the function

fδ(x) =
1

πδ2
c

[
2 exp

(
−r2

/
δ2
c

)
− 1

2
exp

(
−r2

/
2δ2

c

)]
, (41)

which yields the fourth-order cutoff function

F4(r) = 1 − 2 exp
(
−r2

/
δ2
c

)
+ exp

(
−r2

/
2δ2

c

)
. (42)

In spite of the fact that the error associated with (42) is smaller than that with (32),
computations with it did not show significant improvement over (33). In addition,
(42) decays more slowly than the second-order cutoff in (32), and requires more
computation time to compute, and for those reasons it was decided to use the second-
order result F2(r). Although there are other cutoff functions that are of high order
and avoid the computationally expensive exponential term (see e.g. Puckett 1993),
those have not yet been used in our simulations.

3.2. Fast multipole method

Evaluation of the right-hand side of (20) requires that one evaluate both the velocity
and the velocity gradient at the position of each dipole. Since each dipole interacts
with every other dipole, calculating these quantities in a straightforward way requires
O(N2

d ) operations, and is not feasible for many problems. However, it has been shown
previously (Greengard 1988; Greengard & Rokhlin 1997) that interactions between
multipoles need not be calculated individually when they are sufficiently far apart.
For distant dipoles, groupings or cells can be created, and their interactions used in
place of interactions between individual dipoles. As the distance between cells grows
larger, the cell size is increased, resulting in a method that is O(Nd), rather than
O(N2

d ).
A schematic diagram of how such a method can be implemented for the current

problem is shown in figure 2. The annular region of flow is divided into a hierarchy
of approximately square cells, where in this case the largest cells have a dimension of
approximately one-third of the gap size. Each large cell consists of four intermediate
cells, which in turn consist of four small cells. More divisions could be created, but
these were sufficient for the current problem. In figure 2 the interaction between Cells
M and N is shown, because they are so far apart relative to the spacing between
dipoles within each individual cell that using groups rather than individual dipoles
introduces no significant error into the calculation.
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Medium cells

Large cells

Figure 2. Diagram of large and medium cells used to implement the fast multipole method
for summing multipole interactions. Each medium cell contains four small cells that are not
shown.

To calculate interactions, one first computes the sum of all the dipole strengths in
each cell, and places the resulting ‘super dipole’ at the average dipole position in each
cell. As a first approximation, the contribution of the dipoles in Cell N to the velocity
at the positions of the dipoles in Cell M can be found by calculating the velocity
disturbance of the super dipole at Cell N at the position of Cell M. To improve
upon this estimate, one must account for the fact that the dipoles in Cells M and N
are displaced slightly (relative to the cell–cell separation) from the cell centres. This
refinement is done by improving the multipole representation of Cell N (i.e. including
the quadrupole term), and by creating a Taylor expansion of the velocity disturbance
from Cell N about the centre of Cell M.

The strengths D SD
N and positions xc

N of the super dipoles in the N th cell are given
by

xc
N =

1

Nc,N

∑
j

xN,j (43)

and

D SD
N =

∑
j

DN,j , (44)

where Nc,N is the number of dipoles, xN,j is the position of the j th dipole, and DN,j

the strength of the j th dipole in the N th cell. The velocity disturbance v′
M,N of the

N th cell at the position of the Mth cell is then

v′
M,N = D SD

N :∇ J(xM − xN ). (45)

The strategy for calculating multipoles such as D SD
M for all the cells is discussed below.

Note also that the propagator ∇ J decays as 1/r , and hence the approximation given
by (45) must be improved (by including higher-order multipoles) unless the separation
between the cells is hundreds of times larger than the cell dimensions.

The improvement is obtained by accounting for variations in the dipole positions
about the centre of Cells M and N, a factor which is neglected in the first
approximation in (45). To account for variations in the dipole positions about the
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centre of Cell N, we use the quadrupole moment QN of that cell:

QN =
∑

j

(xj − xN )DN,j . (46)

The quadrupole QN creates an adjustment ∆v′ to the velocity disturbance given in
(45), where

�v′
w = −QN,rks

∂

∂xr

∂

∂xk

J sw(xM − xN ). (47)

In (47), indicial notation has been used to clarify the nature of the triple dot product
between the quadrupole QN and the propagator ∇∇ J . The subscript M, N has been
omitted on the left-hand side, to avoid confusion between the various indices, it being
understood that the result in (47) is to be added to that in (45). The negative sign is
present because the extra gradient is with respect to xN .

To complete the calculation of terms that decay as 1/r2, the effect of the varying
positions of the dipoles in the Mth cell must also be taken into account. This term is
found by recognizing v′

M,N in (45) as the first term of a Taylor expansion about the

cell centre xM , and calculating the 1/r2 correction �v′′
j for the velocity at the position

of the j th dipole:

�v′′
j = (xj − xM ) · ∇Mv′

M,N . (48)

The subscript M on ∇M indicates that the derivative is with respect to xM . Interactions
other than those in (45), (47) and (48) decay as 1/r3 or faster, and are neglected here.

Implementation of the fast multipole method requires calculation of the super
dipoles in (45) and the quadrupoles in (47) for the small, intermediate and large
cells shown in figure 2. This calculation is best performed by starting with the small
cells, for which D SD and Q can be calculated in O(Nd) operations. Once these are
obtained, the corresponding quantities for the intermediate and large cells follow in a
straightforward fashion. Clearly the super dipole for an intermediate cell is simply the
sum of those of its four constituent small cells, and its position is the average position
of the constituent cells. Similarly, the positions and super dipoles of the large cells
can be computed from those of the intermediate cells. Calculation of the quadrupoles
for the intermediate cells from those of the small cells requires that the centre about
which Q is calculated be shifted. In terms of Cartesian vectors and tensors, this
shifting of positions is relatively simple. If xM is the centre of an intermediate cell,
and xm that of one of its four constituent small cells, then the contribution of the
quadrupole Qm of the small cell to the quadrupole QM of the intermediate cell is

Q ′
M =

∑
j

(xj − xM )DM,j = Qm + (xm − xM )D SD
m . (49)

In (49), the superscript prime on Q ′
M indicates that the right-hand side is the

contribution of one of the constituent cells to the quadrupole QM ; to complete
the calculation of QM , the other three small cells would also have to be included.
Clearly if the quadrupoles Qm and super dipoles D SD

m of the small cells are known, they
can be used to calculate the quadrupoles of the intermediate cells; the quadrupoles
for the large cells are obtained in an analogous fashion.

Calculation of dipole–dipole interactions by using cells as described above involves
neglecting interactions that are O(rc/r)3, where rc is the dimension of the cell and r

the cell–cell separation. In the implementation used here, interactions between dipoles
closer than 20 times the size of the smallest cell are calculated individually; dipoles
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Population 3 Population 2 Population 1

t ′=t –T t ′=t –s2 t ′=t –s1 t ′=t

Figure 3. Schematic diagram of the dipole regeneration method used to make simulations
stable for an indefinite period of time.

farther than 20 times the smallest cell size, but closer than 20 times the size of
the intermediate cells (which are themselves double the size of the small cells) are
calculated by using the small cells; dipoles farther than 20 times the intermediate cell
size, but closer than 20 times the size of the large cells are calculated by using the
intermediate cells; and dipoles farther than 20 times the large cell size are calculated
by using the large cells. By using this conservative approach, it is ensured that
negligible error is introduced with the fast multipole method.

Although the fortran code used here is far from being fully optimized, using the
fast multipole method increased the computational speed by orders of magnitude. For
a simulation with 120 000 dipoles, a single time step (requiring four full calculations for
the Runge–Kutta integration) used 2 hours of CPU time on a one-processor, 600 MHz,
Pentium III computer. Approximately 300 MB of RAM were typically required, with
the maximum allowed by the Pentium processors being 512 MB. Because the need for
processor time is dominated by the calculation of dipole–dipole interactions, including
more relaxation times in the memory functions M(t − t ′) in (11) and (14) would have
a negligible impact on the computation time per step. Shorter relaxation times would
require smaller time steps, but the same is true for resolving the time derivatives in
differential constitutive models. Including additional relaxation times λi that are small
compared to the inverse of the rate of deformation, λi � 1/γ̇ , could be facilitated
by approximating the strain terms in (11) and (14) as constant, or by using Taylor
expansions in (t − t ′)/λi , thereby allowing analytic evaluation of the integrals.

3.3. Regeneration of dipoles

In the method described above, a single population of dipoles is introduced at the
start of a simulation, and their trajectories are calculated by direct integration of the
velocity. Although this approach is adequate for many calculations, at long enough
times it is likely that small errors in the velocity will accumulate to the point where
they distort the distribution of dipoles. To avoid this problem, it is necessary to limit
the lifetime of any one population of dipoles, thereby limiting the effect of small
errors in the velocity.

To achieve this goal, one can periodically create and destroy a fraction of the
dipoles in a simulation, as shown schematically in figure 3. The three populations of
dipoles are denoted Population 1, Population 2 and Population 3, and they account
for periods of the time integration of t − τ1 < t ′ < t , t − τ2 < t ′ < t − τ1 and
t − T < t ′ < t − τ2, respectively. The total time of integration is therefore from
t ′ = t − T to t ′ = t , where T is taken to be 7.2λ. The times τ1 and τ2 are ordered such
that τ2 > τ1.

When Population 1 is first created, τ1 = 0 and τ2 = T/2, so that Populations 2 and
3 account for the entire integral over t ′. At each time step, τ1 and τ2 are increased,
until τ1 = T/2 and τ2 = T . At this point, Population 3 is destroyed, Populations 1 and
2 are promoted to become Populations 2 and 3, respectively, and a new Population
1 is created, always at the locations specified by the two-dimensional integration
method being employed. In this way, no dipole ever exists for a time longer than T ,
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regardless of how long a simulation continues. Unfortunately, the number of dipoles
required is three times larger than would otherwise be the case, but in many instances
the stability for arbitrarily long times is worth this cost. Obviously, more than three
populations could be used, but this would increase the number of required dipoles
still further. In § 4 below, the number of dipoles quoted is always the number in one
population.

4. Results and discussion
To evaluate the accuracy, stability and feasibility of the method described above,

we have calculated non-Newtonian flows in a journal bearing as shown in figure 1,
and also in a wide-gap concentric cylinder geometry. In the limit where the gap is
small, δ � 1, there is a lubrication flow in the journal bearing in which high pressure
builds at the entrance to the thin-gap region (i.e. where x < 0 and y > 0), and low
pressure develops at the exit to that region. For a Newtonian flow at low Reynolds
number, the result is a large force in the −ey-direction acting on the inner cylinder,
but no force in the ex-direction. For viscoelastic flows, normal stresses act on the
inner cylinder over its whole perimeter, 0 < θ < 2π. However, they are stronger
in the thinner gap on the left-hand side where x < 0, resulting in a net force in
the +ex-direction. Since this effect is a result of a competition between nearly equal
stresses acting over the inner cylinder, it is quite sensitive to error in any region of
the annulus, and the dimensionless force Fx/µΩR0 is therefore a useful parameter
for tracking these non-Newtonian flows.

Before proceeding we note that elastic instabilities are known to occur in these
flows, both for the concentric and eccentric cylinder geometries (Larson, Muller &
Shaqfeh 1990; Larson, Muller & Shaqfeh 1994; Chawda & Avgousti 1996; Dris &
Shaqfeh 1998). However, these instabilities occur at Weissenberg numbers at least
an order of magnitude greater than those used in the simulations described here,
which always pertain to values less than unity, Wi < 1. Two-phase flows, such as
are described in § 4.3, also exhibit elastic instabilities (Grillet, Lee & Shaqfeh 1999),
at lower Weissenberg numbers than the one-phase systems, but still only for values
greater than unity, Wi > 1. In addition, these two-phase ‘ribbing’ instabilities have
been observed for systems partially filled with liquid and partially with air, undergoing
a steady rotation. Those conditions differ significantly from those considered here,
in which there are two liquids with equal densities and steady-shear viscosities,
being subjected to a slow oscillatory rotation. All the results reported in this section
were therefore obtained at conditions that should be free from the effects of elastic
instabilities.

4.1. Normal stresses in the journal bearing

In the limit of low elasticity, Wi → 0, the convected Maxwell model given by (11)
and (12) with S = 0 simplifies to a form of the second-order fluid (SOF) constitutive
model. For the SOF model, an exact solution to flow in a journal bearing has been
derived by Ballal & Rivlin (1976). Their results, calculated from equation (51) of their
paper, and results from the PDM are shown in table 1 for a gap size µ = 0.11 and
an eccentricity ε in the range 0 < ε < 0.4. The results for the PDM were calculated
at Wi = 0.05 and Nd = 41 353, and agree with the exact result to within 4%. We
note again that the force in the x-direction is not simply the force exerted by normal
stresses, but is the result of a slight imbalance between the normal stresses in the
thin- and wide-gap regions of the flow. Obtaining good agreement from a numerical
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Ballal & Rivlin (1976) Point-dipole method

ε
Fx

η0ΩRiDe

Fy

η0ΩRi

Lz

η0ΩR2
i

Fx

η0ΩRiDe

Fy

η0ΩRi

Lz

η0ΩR2
i

0.1 101.9 160.8 67.1 105.6 163.3 67.5
0.2 206.9 321.9 70.6 214.9 326.7 70.9
0.3 319.9 484.1 76.4 332.4 491.3 76.8
0.4 450.2 649.9 84.9 470.3 659.9 85.4

Table 1. Comparison at low De with exact solution for second-order fluids.
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Figure 4. Simulation results for the x-directed force on the inner cylinder obtained
with the convected Maxwell constitutive model, for Weissenberg numbers in the range
0 < Wi � 0.7. Solid curves are computed from (50) multiplied by the expected time dependence

1 − (1 + t/λ)e−t/λ.

calculation of this imbalance, even at eccentricities as low as ε = 0.1, shows that the
point–dipole method yields very accurate forces in weakly elastic flows.

Time-dependent results for Fx/η0ΩR0 at higher Weissenberg numbers, 0 < Wi <

0.7, are shown in figure 4, again for the convected Maxwell model. Here the eccentricity
is ε = 0.1, the gap is again δ = 0.11, and the inner cylinder has been started abruptly
from rest. In the limit where the gap is small, δ � 1, the eccentricity is small, ε � 1,
and the Deborah number (but not necessarily Wi) is small, De � 1, the flow in
the journal bearing is approximately viscometric in nature. Under such conditions,
most constitutive equations reduce to a common form, known as the Criminale–
Ericksen–Filbey (CEF) equation, for arbitrary values of the Weissenberg number Wi.
Phan-Thien & Tanner (1981) used the CEF equation to derive the following result
for the x-directed force:

Fx

η0ΩR0

=
4πε

δ
Wi. (50)
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The force in (50) is a direct result of the first normal stress difference in the fluid. For
a Maxwell fluid, this normal stress difference grows in time according to the function

1 − (1 + t/λ)e−t/λ following start-up of a steady viscometric flow (Bird et al. 1987).
The solid curves shown for comparison in figure 4 are, therefore, this function of time
multiplied by Fx/η0ΩR0 from (50). Both the final steady x-directed force and the
predicted time-dependent rate of growth are in good agreement with the computed
results.

The results shown in figure 4 were obtained with 41 353 dipoles, with the exception
of one simulation at Wi = 0.5, where the number of dipoles was approximately
quadrupled (the dipole spacing was reduced by half) to 166 096. Up to Wi = 0.5,
stable and accurate results are obtained. The simulation with Nd = 166 096 confirms
that the results are converged with respect to the number of dipoles, since the
two sets of results at Wi = 0.5 are in very good agreement. Although the higher
number of dipoles smooths the behaviour in time, it is virtually certain that
eventually a simulation that always makes use of the same population of dipoles
will become inaccurate, whereas periodically introducing new populations should
make the simulation stable indefinitely. This matter is of some importance in, for
example, simulations of suspensions of particles or drops, where the simulation time
may need to be hundreds of relaxation times long.

At Wi = 0.6, a steady result is still obtained with Nd = 41 353, but the calculated
force shows greater fluctuations in time, with deviations up to 10% from the predicted
steady force being apparent. At Wi = 0.7, the simulation reaches a fluctuating result
approximately equal to the expected value (cf. (50)) for 6λ < t < 9λ, but becomes
unstable at approximately t = 9λ. The time step used in the fourth-order Runge–
Kutta integration was �t = 0.1λ at the lower Weissenberg numbers Wi < 0.6, and
�t = 0.05λ for Wi = 0.6 and 0.7. The two time steps gave identical results at Wi = 0.5,
but showed a slight difference at Wi = 0.6, which is why the smaller time step was
used at the faster rotation rates.

A fluctuation is visible for the larger Weissenberg numbers, Wi > 0.4, at the time
t = 7.2λ when a new population of dipoles (i.e. Population 3) is introduced. That this
is the cause of the fluctuation is confirmed by the fact that the fluctuation is missing in
the simulation with Nd = 166 096, in which only one population of dipoles was used.
The conversion from integrating over Eulerian positions in space to an integration
over material or Lagrangian position, as described in (16) and (19), presupposes a
velocity field that exactly satisfies conservation of mass. However, as noted above, the
velocity calculated with the smoothed propagator ∇ J δ does not satisfy the continuity
equation exactly as long as δc is finite. As the dipole positions are advanced with
the fluid velocity, deviations from purely incompressible flow lead to inaccuracies in
the area integral, and fluctuations appear when new populations of dipoles, not yet
affected by the fluid velocity, are introduced. The presence of small fluctuations of
this type can be tolerated. To eliminate them, one must either improve the accuracy of
the velocity field, or use more dipole populations that are introduced more frequently.
Either option, of course, comes at the cost of increased computation time.

In figure 5, results are shown that are comparable to those in figure 4, but for
an Oldroyd-B fluid with a solvent fraction S = 0.85. As was found by Rajagopalan
et al. (1993), relative to the convected Maxwell model, this model is more stable
because of the purely viscous solvent contribution, and results were obtained in the
range 0 < Wi < 0.9. All of these results were obtained at Nd = 41 353, and dipole
regeneration was used in all cases. At Wi = 0.6, the time step �t = 0.1λ yielded
results identical to those obtained at �t = 0.05λ, as shown. However, small differences
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Figure 5. Simulation results for the x-directed force on the inner cylinder obtained with
the Oldroyd-B constitutive model with S = 0.85, for Weissenberg numbers in the range
0.6 � Wi � 0.9. Results for Wi > 0.6 involve step changes in the rotation rate of the inner
cylinder at t = 4.5λ, 8λ and 9.4λ.

appeared for Wi > 0.6, and hence for those results a time step of �t = 0.05λ was
used. Since increasing the Weissenberg number corresponds to increasing either the
relaxation time λ or the rotational velocity Ω , it is understandable that a smaller
time step becomes necessary for larger Wi. Even with the smaller time step, moving
to the final steady conditions at Wi > 0.6 was more stable when done in stages than
when going from rest to Wi > 0.7 in one jump. Increasing the rotation rate in stages
also served the purpose of showing the transient response of the method to changes
made during a simulation. For Wi > 0.6, the rotation rate was increased from rest
to Wi = 0.6 at t = 0, and further changes in rotation rate were used to increase the
Weissenberg number at t = 4.5λ, 8λ and 9.4λ.

It is noted above that, to avoid the spreading of a dipolar blob through an
interface confining the flow, interactions between dipoles and points on the surface
of the journal bearing were not smoothed by the use of cutoff functions. As a result,
the velocity on the cylinder surfaces to which the singularities external to the flow
respond is slightly different than the velocity sensed by a dipole close to the surface.
The magnitude of the radial velocity vr/ΩR0 at t = 5λ is plotted versus the cutoff
parameter δc in figure 6 for three Weissenberg numbers, Wi = 0.2, 0.4 and 0.6. The
size of the error, or the difference between the smoothed and unsmoothed velocity
incurred at the boundary, is seen to be quite small, and it decreases linearly with
decreasing δc. This rate of decrease is in contrast to the error estimates for ed and
em in (40), which show a δ2

c dependence for the error in the absence of boundary
effects. It is in part because of this relatively strong dependence on δc contributed
at the boundary that higher-order cutoff functions, such as the fourth-order cutoff
given in (42), do not appear to offer any significant advantage in a surface-dominated
lubrication flow such as this one. An improved rate of convergence, say δ2

c or higher,
could presumably be obtained by using a smoothing procedure and cutoff functions
that are not isotropic, and that explicitly account for the presence of the boundary.
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Figure 6. Error in the radial velocity v̂r on the surface of the inner cylinder at θ = 3π/2 for
Weissenberg numbers of 0.2, 0.4 and 0.6. The error decreases linearly as the cutoff parameter
δc is decreased.
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Figure 7. Simulation results for the x-directed force on the inner cylinder are shown at
Wi = 0.5 for three constitutive models: the convected Maxwell constitutive model, the
Oldroyd-B model With S = 0.75, and the PSM model with α = 10.0. Results for the Maxwell
model correspond to Nd = 41 353 (open circles) and Nd = 166 096 (solid squares).

Results for Fx/η0ΩR0 for a convected Maxwell fluid, an Oldroyd-B fluid with
S = 0.75, and a PSM fluid with α = 10.0 are shown in figure 7 for Wi = 0.5. These
values of S and α were chosen because they are representative of values found in
the literature (Rajagopalan et al. 1993; Barakos & Mitsoulis 1995). Corresponding
values of the y-component of force and the torque on the inner cylinder are given in
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Constitutive model
Fy

η0ΩRi

Lz

η0ΩR2
i

Newtonian 164.3 67.9
Convected Maxwell 164.5 67.8
Oldroyd-B (S = 0.75) 164.9 68.0
PSM (α = 10.0) 117.0 59.3

Table 2. Forces and torques for different constitutive models.

table 2. The effect of the solvent contribution described by S and the shear thinning
of the first normal stress difference in the PSM model are clearly evident. For the
Maxwell fluid and Oldroyd-B fluids, the normal stresses contribute a force in the
x-direction, but there is a negligible effect on either the torque or y-component of
force on the inner cylinder. The Oldroyd-B fluid’s normal stresses are one-quarter that
of the Maxwell fluid, because 75% of the viscous response of the Oldroyd-B fluid is
contributed by the solvent. For the PSM fluid, shear thinning is present in both the
normal stress coefficient and the shear viscosity. Hence, even though the zero-shear
viscosity of the PSM fluid is the same as that of the Maxwell fluid, the x-component
of force on the inner cylinder is significantly smaller. In addition, the torque on the
rotating inner cylinder is also reduced significantly, because of the shear thinning
viscosity. It is worth noting that it is quite easy to switch from one model to another,
since the quantities needed to apply (11) with S �= 0, or (14), are also known even if
it is the relatively simple convected Maxwell model that is being used.

To evaluate the method further, calculations were performed at Wi = 0.4 for a
range of eccentricities, 0.1 � ε � 0.4. With the exception of the result at ε = 0.4, these
calculations were also calculated with 41 353 dipoles, introducing new populations at
time intervals of 3.6λ. As shown in figure 8, the results for ε < 0.4 are stable and
accurate, with minimal fluctuations. At ε = 0.4, the width of the annulus in its thinnest
region was too narrow relative to the dipole spacing, and the simulation did not reach
a steady solution. Doubling the number of dipoles to 79 447 did yield a steady
solution, although the fluctuations are pronounced, particularly at t = 7.2λ where
the third dipole population is introduced. That the fluctuation at t = 7.2λ is a result
of the change in dipole populations was confirmed by performing a simulation with
165 470 dipoles, in which only a single dipole population was used. The fluctuation
has disappeared and the response is relatively smooth, but the simulation becomes
unstable at approximately t = 8λ, as evidenced by the rapid drop in the x-component
of force.

The eccentric cylinder configuration of figure 1 with an eccentricity of ε = 0.4 is
quite different from the nearly uniform channel present at ε = 0.1. At the higher
eccentricity, the ratio of wide-to-narrow dimension of the channel is 2.3:1, and a
recirculation zone develops near the outer cylinder in the wide portion of the channel.
This zone is clearly evident in contour plots of the angular velocity v̂θ , presented in
figures 9(a) and 9(b). These plots were made by using the conversion (r, θ ) → (ζ, θ ),
thereby mapping the flow domain to an annulus between concentric cylinders (Beris
et al. 1983). The r- and ζ -coordinates are related by

r̂ = 1 + (ζ − 1)(1 + ε cos θ) + O(ε2µ2). (51)

In figure 9(a) the Newtonian velocity profile is shown, and figure 9(b) shows the result
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Figure 8. Simulation results for the x-directed force on the inner cylinder obtained with the
convected Maxwell constitutive model are shown at Wi = 0.4 for eccentricities in the range
0 < ε � 0.4. Results at ε = 0.4 correspond to Nd = 79 447 (open circles) and Nd = 165 470
(solid triangles).
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Figure 9. Contour plots of the velocity v̂θ obtained by using (a) a Newtonian constitutive
model and (b) the convected Maxwell model at Wi = 0.4. The contour bounding the
recirculation region corresponds to v̂θ = 0, and that at the inner cylinder to v̂θ = 1.
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at Wi = 0.4. The recirculation zone in the wide region of the flow is bounded by the
contour for which v̂θ = 0, and is identified on the plot.

In fact, the Newtonian and non-Newtonian velocity fields should be
indistinguishable for the convected Maxwell model in this geometry, as has been
found by others (Beris, Armstrong & Brown 1986). This result is also obtained with
the current method in most of the flow domain, but the contours do show a change
near the inner rotating cylinder, where they are farther from the surface for the non-
Newtonian flow than for the Newtonian flow. Since the non-Newtonian stresses in
the flow are significant, as evidenced by the results for the force on the cylinder, these
plots show that the non-zero contributions of the dipoles to the velocity field cancel
one another as they should, leaving the net flow almost unchanged. In addition, one
sees that the smoothing process described in § 3.1 does allow one to calculate velocity
fields throughout the fluid, even though it contains point-dipole singularities. These
velocity profiles show some fluctuations as a result of those singularities, but the
fluctuations are small, being about 1% of the overall strength of the flow in this case.
The radial component of the velocity is quite weak in these flows, and is smaller than
1% of the angular velocity. Hence, meaningful contour plots of the radial velocity
could not be produced.

4.2. Shear thinning in a wide-gap concentric-cylinder geometry

In order to examine a case where strong shear thinning is present, and where analytical
results are also available for comparison, additional calculations were made for a
power-law fluid flowing in a concentric-cylinder geometry with a wide gap. The inner
and outer radii were in the ratio R0/Ri = 1.4, and the constitutive equation was given
by

τ π = (m|γ̇ |n−1 − µ)γ̇ , (52)

where n is the flow index, and shear thinning is present for n < 1. The velocity profile
for a power-law fluid flowing between concentric cylinders, with the inner cylinder
rotating, is

v̂θ =

[
(1/r̂)2/n − 1

(R0/Ri)2/n − 1

]
r̂ , (53)

and the torque per unit length on the inner cylinder by

L̂z = 2π

[
2/n

1 − (Ri/R0)2/n

]n

. (54)

Velocity profiles are shown in figure 10 for values of the flow index in the range
0.3 < n < 1, where n = 0.3 corresponds to a strongly shear-thinning fluid. The solid
curves are the predictions of (53), and the data points are results from the PDM. With
29 304 dipoles, excellent agreement is obtained at n = 0.6, and the predicted velocity is
in error by approximately 6% at n = 0.4. Note that, as the width of the gap increases
from 0.11Ri to 0.4Ri , the number of dipoles needed to fill the domain decreases,
because the disparity in length scales between the radial and angular directions is
decreased. Doubling the number of dipoles from 29 304 to 60 164 yields excellent
agreement at n = 0.4, with only slight errors present for 1 < r̂ < 1.1, where the
velocity gradient is quite steep. At n = 0.3, agreement is still good, but the errors
close to the inner cylinder increase to approximately 6%. Even at n = 0.3, the torques
given by the PDM are very accurate, differing from (54) by only 0.1%.
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Figure 10. Plots of the angular velocity vs. radial position for flow of a power-law fluid
between concentric cylinders, with R0/Ri = 1.4, calculated by using the point-dipole method.
Results are shown for values of the flow index n in the range 0.3 � n � 1.0.

4.3. Two-phase oscillatory flow between concentric cylinders

An interesting and useful characteristic of the PDM is the Lagrangian nature of
the dipoles, which always move with the surrounding fluid. Because of this trait, the
method is well-suited to simulations of moving particles, which can be represented
as clusters of singularities, or to simulating two-phase flows of immiscible liquids.
In the wide-gap concentric-cylinder geometry, we have used this feature to study
time-dependent flow of a viscoelastic fluid in contact with a Newtonian fluid. The
viscosity of the Newtonian fluid is the same as that of the viscoelastic fluid, which
is described by the convected Maxwell model (and hence does not shear thin). A
schematic diagram of the situation is shown in figure 11. The annulus is half-filled
with a Newtonian fluid, which is on the bottom, and the top half is filled with a
viscoelastic fluid. The densities of the two fluids and the surface tension at the interface
are such that buoyancy effects and capillarity are negligible relative to viscous effects.

We note that, using the methods recently developed by Nitsche & Schaflinger
(2001), in which point forces rather than dipoles are distributed throughout a fluid,
both unequal densities and surface tension could be included within the framework of
this singularity method. In addition, by using the point forces in the fluid to account
for inertial forces, and Green’s function for the unsteady Stokes equations instead of
(7) (cf. Pozrikidis 1992), the method could be extended to finite Reynolds numbers.
However, we have not included those effects here.

Hence, in the current problem, representing the Newtonian fluid is as simple as
removing the dipoles from the lower half of the flow domain. The fluid interface is
taken to be flat initially, and then at t = 0 the inner cylinder begins to rotate with a
sinusoidal velocity:

v̂θ (r̂ = 1) = sin ω̂t̂ , (55)

where the frequency has been non-dimensionalized by the relaxation time λ, and the
angular velocity by the product of the maximum rotation rate and the inner radius
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Viscoelastic

Newtonian

X (t)

Figure 11. Schematic diagram of a time-dependent two-phase flow between concentric
cylinders with R0/Ri = 1.4. The viscoelastic fluid is on top (y > 0), a Newtonian fluid
with the same density and viscosity is underneath, and the inner cylinder rotates with velocity
Ω(t).

Ri . If the Deborah and Weissenberg numbers are defined as in (3) and (4), but with Ω

being the maximum rotation rate, then the values for this time-dependent simulation
are Wi = 0.3 and De = 0.12. The dimensionless frequency is ω̂ = π/6, so that one
cycle is completed at dimensionless time intervals of 12. The number of dipoles was
14 606, lower than is used in the examples above because half of the annulus is filled
with dipole-free Newtonian fluid. The interface between the two liquids is tracked by
100 points that initially form a horizontal line at y = 0, and thereafter move with the
fluid, but play no other role in the simulation.

The position of this interface is plotted in figure 12(a) for the left-hand side of
the annulus (cf. figure 11), and in figure 12(b) for the right-hand side. The positions
plotted correspond to times of 3, 6 and 9 cycles, or t = 12λ, 24λ and 36λ. For a
pure Newtonian fluid, the interface would necessarily remain flat, as a consequence of
the reversibility of Stokes equations. As shown, when the upper fluid is viscoelastic,
the Newtonian fluid is pulled upward, particularly along the surface of the inner
cylinder. The motion is not symmetric, with the left- and right-hand sides showing
significant differences, although the Newtonian fluid is pulled upward in each case. The
protrusion of Newtonian fluid on the right-hand side is broader than that on the left,
and shows two pronounced peaks relative to only one on the left. This asymmetry is to
be expected because the left- and right-hand interfaces are significantly different: on
the left-hand side, the rotation of the cylinder moves viscoelastic fluid into Newtonian
fluid, whereas on the right it moves Newtonian fluid into viscoelastic fluid.

The results, denoted by open circles, open squares and solid triangles, after 3, 6
and 9 cycles, respectively, correspond to a cutoff parameter set at δc = 0.036. In
these cases, both the dipole velocities and the velocities of the points marking the
liquid/liquid interface were calculated using this value. At 9 cycles, a set of results
is also shown in figure 12(a, b) where dipole–dipole interactions are smoothed in
the usual manner, with δc = 0.036, but the velocities used to update the interface
position were not smoothed. These points, denoted by solid circles, are labelled δc = 0.
The interface shape they show (the solid circles) is qualitatively identical to those
marked δc = 0.036 (the solid triangles), but is shifted downward significantly and the
points are relatively scattered. As mentioned above, the velocity field generated by
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Figure 12. Positions of the interface on (a) the left-hand side and (b) the right-hand side for
the configuration shown in figure 11, after the inner cylinder has completed 3, 6 and 9 cycles.
At 9 cycles, results are shown for interface positions updated with the smoothed (δc = 0.036)
and unsmoothed (δc = 0) propagator. A cycle corresponds to a time of 12λ.

the smoothed dipole propagator ∇ J δ only conserves mass exactly for distances far
from the dipole relative to δc, and the use of ∇ J δ near a liquid/liquid interface can
therefore cause a net increase or decrease of the two phases. In contrast, changes in
interface positions computed with the unsmoothed propagator ∇ J , corresponding to
δc = 0, are irregular but conserve mass exactly. Figure 12(a, b), shows that for the
interface changes computed with δc = 0.036 there is a net increase in Newtonian fluid,
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with the parts of the interface displaced upward moving farther than those moving
downward. This undesirable effect is absent in the interface marked δc = 0.

The behaviour of the interface can be explained qualitatively. In a two-dimensional
flow, a normal stress difference can be thought of as a tension along the streamlines
(Barnes, Hutton & Walters 1989). Hence, there is a tension in the upper viscoelastic
fluid that is not present in the lower Newtonian fluid. That tension is greatest where
the shear rate is greatest, close to the inner cylinder, and hence Newtonian fluid
is pulled upward there. The requirement that mass be conserved then results in a
reverse pressure-driven flow of viscoelastic fluid into the Newtonian region, and this
flow is strongest in the middle of the channel. Apparently the pressure-driven flow is
not able to overcome the normal-stress-driven tension near the outer cylinder wall,
and so a second protrusion of Newtonian fluid into the upper viscoelastic region is
found there. This explanation does not explain the bimodal shape of the interface
on the right-hand side, but it does provide a simple interpretation of the overall
behaviour. There appear to be no experimental results available for comparison with
these results.

5. Conclusion
A new method has been introduced for calculating time-dependent viscoelastic flows

with integral constitutive equations. The method is based on the integral solution to
the equations of motion in the limit of low Reynolds number, but differs from the
well-known boundary-integral method because of nonlinear terms required by the
non-Newtonian nature of the flow. The method has been shown to be accurate at low
and moderate levels of elasticity, or when Wi < 1, and in the presence of strong shear
thinning, such that the flow index is in the range 0.3 � n � 1. The method can be
readily applied to any integral (or algebraic) constitutive equation. Hence, it allows
one to take full advantage of the ability of such models to account for the multiple
relaxation times present in most viscoelastic fluids, as well as other advantages they
might offer in capturing realistic rheological properties. In addition, the fact that the
dipoles contributing the non-Newtonian stresses in the flow are Lagrangian in nature,
and move with the fluid velocity, makes the method well-suited to multiphase flow
calculations or particle dynamics simulations involving non-Newtonian fluids.

This work was funded by NSF Grant CTS 98126. Partial funding was also provided
by Grant 36065-AC9 from the American Chemical Society Petroleum Research Fund
(ACS-PRF).
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